Home > Press > Teamwork makes light shine ever brighter: Combined energy sources return a burst of photons from plasmonic gold nanogaps
Electrical current and laser light combine at a gold nanogap to prompt a dramatic burst of light. The phenomenon could be useful for nanophotonic switches in computer chips and for advanced photocatalysts. (Credit: Natelson Research Group/Rice University) |
Abstract:
If youre looking for one technique to maximize photon output from plasmons, stop. It takes two to wrangle.
Teamwork makes light shine ever brighter: Combined energy sources return a burst of photons from plasmonic gold nanogaps
Houston, TX | Posted on March 18th, 2021
Rice University physicists came across a phenomenon that boosts the light from a nanoscale device more than 1,000 times greater than they anticipated.
When looking at light coming from a plasmonic junction, a microscopic gap between two gold nanowires, there are conditions in which applying optical or electrical energy individually prompted only a modest amount of light emission. Applying both together, however, caused a burst of light that far exceeded the output under either individual stimulus.
The researchers led by Rice physicist Douglas Natelson and lead authors Longji Cui and Yunxuan Zhu found the effect while following up experiments that discovered driving current through the gap increased the number of light-emitting hot carrier electrons in the electrodes.
Now they know that adding energy from a laser to the same junction makes it even brighter. The dramatic enhancement could be employed to make nanophotonic switches for computer chips and for advanced photocatalysts.
The details appear in the American Chemical Society journal Nano Letters.
Its been known for a long time that its possible to get a light emission from these tiny structures, Natelson said. In our previous work, we showed that plasmons play an important role in generating very hot charge carriers, equivalent to a couple of thousand degrees.
Plasmons are ripples of charge that carry energy, and when triggered, flow across the surface of certain metals, including gold. In the voltage-driven mechanism, electrons tunnel through the gap, exciting plasmons, which leads to hot electrons recombining with electron holes and emitting photons in the process.
Even though the effect seemed dramatic at the time, it paled in comparison to the new discovery.
I like the idea of 1+1=1,000, Natelson said. You do two things, each of which doesnt give you much light in this energy range, but together, holy cow! Theres a lot of light coming out.
The specific mechanisms are worthy of further study, he said. One possibility is that optical and electrical drives combine to enhance the generation of hot electrons. An alternative is that light emission gets a boost via anti-Stokes electronic Raman scattering. In that process, light input prompts already excited hot carriers to relax back to their ground states, releasing more photons.
Something interesting is going on there, where each of these individual excitations is not enough to give you the amount of light coming out, Natelson said. But put them together and the effective temperature is much higher. Thats one possible explanation: that the light output is an exponential function of the temperature. Reaching that effective temperature takes hundreds of femtoseconds.
The Raman mechanism is more subtle, where light comes in, grabs energy from the voltage, and even stronger light leaves, he said. That happens even faster, so a time-dependent experiment could probably help us figure out the dominant mechanism.
The reason its neat is that you can, in principle, couple the electrical drive and light coming in to do all kinds of things, Natelson said. If the hot carrier picture is right, theres the possibility of doing some interesting chemistry.
Co-authors of the paper are Peter Nordlander, the Wiess Chair in Physics and Astronomy and a professor of electrical and computer engineering and of materials science and nanoengineering at Rice, and Massimiliano Di Ventra, a professor of physics at the University of California, San Diego. Cui, a former postdoctoral fellow at Rice, is now an assistant professor of mechanical engineering and materials science and engineering at the University of Colorado Boulder. Zhu is a graduate student at Rice. Natelson is chair and a professor of physics and astronomy and a professor of electrical and computer engineering and of materials science and nanoengineering.
The J. Evans Attwell Welch Fellowship, Rices Smalley-Curl Institute, the Robert A. Welch Foundation, the University of Colorado and the National Science Foundation supported the research.
####
About Rice University
Located on a 300-acre forested campus in Houston, Rice University is consistently ranked among the nations top 20 universities by U.S. News & World Report. Rice has highly respected schools of Architecture, Business, Continuing Studies, Engineering, Humanities, Music, Natural Sciences and Social Sciences and is home to the Baker Institute for Public Policy. With 3,978 undergraduates and 3,192 graduate students, Rices undergraduate student-to-faculty ratio is just under 6-to-1. Its residential college system builds close-knit communities and lifelong friendships, just one reason why Rice is ranked No. 1 for lots of race/class interaction and No. 1 for quality of life by the Princeton Review. Rice is also rated as a best value among private universities by Kiplingers Personal Finance.
Follow Rice News and Media Relations via Twitter @RiceUNews.
For more information, please click here
Contacts:
Jeff Falk
713-348-6775
Mike Williams
713-348-6728
Copyright © Rice University
If you have a comment, please Contact us.
Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Rice labs bright idea is pure gold:
Nordlander Nanophotonics Group:
Rice Department of Physics and Astronomy:
Wiess School of Natural Sciences:
News and information
Bruker Light-Sheet Microscopes at Major Comprehensive Cancer Center: New Advanced Imaging Center Powered by Two MuVi and LCS SPIM Microscopes March 25th, 2021
Fast-acting, color-changing molecular probe senses when a material is about to fail March 25th, 2021
Microscope that detects individual viruses could power rapid diagnostics March 19th, 2021
A new industry standard for batteries: ultra-clean facility for graphene nanotube dispersions March 19th, 2021
Chemistry
TPU scientists offer new plasmon energy-based method to remove CO2 from atmosphere March 19th, 2021
Govt.-Legislation/Regulation/Funding/Policy
Fast-acting, color-changing molecular probe senses when a material is about to fail March 25th, 2021
Advancement creates nanosized, foldable robots March 19th, 2021
Microscope that detects individual viruses could power rapid diagnostics March 19th, 2021
Possible Futures
Fast-acting, color-changing molecular probe senses when a material is about to fail March 25th, 2021
TPU scientists offer new plasmon energy-based method to remove CO2 from atmosphere March 19th, 2021
Microscope that detects individual viruses could power rapid diagnostics March 19th, 2021
Chip Technology
Remote control for quantum emitters:Novel approach could become a asset in quantum computers and quantum simulation March 12th, 2021
Scientists build the smallest cable containing a spin switch March 12th, 2021
Optical computing/Photonic computing
New study investigates photonics for artificial intelligence and neuromorphic computing February 1st, 2021
Bringing Atoms to a Standstill: NIST Miniaturizes Laser Cooling January January 21st, 2021
USTC develops ultrahigh-performance plasmonic metal-oxide materials January 11th, 2021
Discoveries
Fast-acting, color-changing molecular probe senses when a material is about to fail March 25th, 2021
Advancement creates nanosized, foldable robots March 19th, 2021
TPU scientists offer new plasmon energy-based method to remove CO2 from atmosphere March 19th, 2021
Announcements
Bruker Light-Sheet Microscopes at Major Comprehensive Cancer Center: New Advanced Imaging Center Powered by Two MuVi and LCS SPIM Microscopes March 25th, 2021
Fast-acting, color-changing molecular probe senses when a material is about to fail March 25th, 2021
TPU scientists offer new plasmon energy-based method to remove CO2 from atmosphere March 19th, 2021
Microscope that detects individual viruses could power rapid diagnostics March 19th, 2021
Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters
Fast-acting, color-changing molecular probe senses when a material is about to fail March 25th, 2021
Advancement creates nanosized, foldable robots March 19th, 2021
TPU scientists offer new plasmon energy-based method to remove CO2 from atmosphere March 19th, 2021
Grants/Sponsored Research/Awards/Scholarships/Gifts/Contests/Honors/Records
Nanotech scientists create world’s smallest origami bird March 17th, 2021
Quantum quirk yields giant magnetic effect, where none should exist: Study opens window into the landscape of extreme topological matter March 1st, 2021
Photonics/Optics/Lasers
Microscope that detects individual viruses could power rapid diagnostics March 19th, 2021
Compression or strain – the material expands always the same March 10th, 2021
Instrument at BESSY II shows how light activates MoS2 layers to become catalysts March 8th, 2021