Nanotechnology Now – Press Release: Temperature-sensing building material changes color to save energy


Home > Press > Temperature-sensing building material changes color to save energy

The material contains a layer that can take on two conformations: solid copper that retains most infrared heat, which helps keep the building warm; or a watery solution that emits infrared, which can help cool the building.

CREDIT
University of Chicago PME - Image courtesy of Hsu Group
The material contains a layer that can take on two conformations: solid copper that retains most infrared heat, which helps keep the building warm; or a watery solution that emits infrared, which can help cool the building.

CREDIT
University of Chicago PME – Image courtesy of Hsu Group

Abstract:
Researchers at the University of Chicago’s Pritzker School of Molecular Engineering (PME) have designed a chameleon-like building material that changes its infrared color—and how much heat it absorbs or emits—based on the outside temperature. On hot days, the material can emit up to 92 percent of the infrared heat it contains, helping cool the inside of a building. On colder days, however, the material emits just 7 percent of its infrared, helping keep a building warm.

Temperature-sensing building material changes color to save energy


Chicago, IL | Posted on January 27th, 2023

“We’ve essentially figured out a low-energy way to treat a building like a person; you add a layer when you’re cold and take off a layer when you’re hot,” said Asst. Prof. Po-Chun Hsu, who led the research published in Nature Sustainability. “This kind of smart material lets us maintain the temperature in a building without huge amounts of energy.”

Driven by climate change
According to some estimates, buildings account for 30 percent of global energy consumption and emit 10 percent of all global greenhouse gas. About half of this energy footprint is attributed to the heating and cooling of interior spaces.

“For a long time, most of us have taken our indoor temperature control for granted, without thinking about how much energy it requires,” said Hsu. “If we want a carbon-negative future, I think we have to consider diverse ways to control building temperature in a more energy-efficient way.”

Researchers have previously developed radiative cooling materials that help keep buildings cool by boosting their ability to emit infrared, the invisible heat that radiates from people and objects. Materials also exist that prevent the emission of infrared in cold climates.

“A simple way to think about it is that if you have a completely black building facing the sun, it’s going to heat up more easily than other buildings,” said PME graduate student Chenxi Sui, the first author of the new manuscript.

That kind of passive heating might be a good thing in the winter, but not in the summer.

As global warming causes increasingly frequent extreme weather events and variable weather, there is a need for buildings to be able to adapt; few climates require year-round heating or year-round air conditioning.

From metal to liquid and back
Hsu and colleagues designed a non-flammable “electrochromic” building material that contains a layer that can take on two conformations: solid copper that retains most infrared heat, or a watery solution that emits infrared. At any chosen trigger temperature, the device can use a tiny amount of electricity to induce the chemical shift between the states by either depositing copper into a thin film, or stripping that copper off.

In the new paper, the researchers detailed how the device can switch rapidly and reversibly between the metal and liquid states. They showed that the ability to switch between the two conformations remained efficient even after 1,800 cycles.

Then, the team created models of how their material could cut energy costs in typical buildings in 15 different U.S. cities. In an average commercial building, they reported, the electricity used to induce electrochromic changes in the material would be less than 0.2% of the total electricity usage of the building, but could save 8.4% of the building’s annual HVAC energy consumption.

“Once you switch between states, you don’t need to apply any more energy to stay in either state,” said Hsu. “So for buildings where you don’t need to switch between these states very frequently, it’s really using a very negligible amount of electricity.”

Scaling up
So far, Hsu’s group has only created pieces of the material that measure about six centimeters across. However, they imagine that many such patches of the material could be assembled like shingles into larger sheets. They say the material could also be tweaked to use different, custom colors—the watery phase is transparent and nearly any color can be put behind it without impacting its ability to absorb infrared.

The researchers are now investigating different ways of fabricating the material. They also plan to probe how intermediate states of the material could be useful.

“We demonstrated that radiative control can play a role in controlling a wide range of building temperatures throughout different seasons,” said Hsu. “We’re continuing to work with engineers and the building sector to look into how this can contribute to a more sustainable future.”

####

For more information, please click here

Contacts:
Meredith Davis
University of Chicago

Copyright © University of Chicago

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious
Digg
Newsvine
Google
Yahoo
Reddit
Magnoliacom
Furl
Facebook

ARTICLE TITLE

News and information


Stability of perovskite solar cells reaches next milestone January 27th, 2023


Qubits on strong stimulants: Researchers find ways to improve the storage time of quantum information in a spin rich material January 27th, 2023


UCF researcher receives Samsung International Global Research Outreach Award: The award from the multinational electronics corporation will fund the development of infrared night vision and thermal sensing camera technology for cell phones and consumer electronics January 27th, 2023


Quantum sensors see Weyl photocurrents flow: Boston College-led team develops new quantum sensor technique to image and understand the origin of photocurrent flow in Weyl semimetals January 27th, 2023

Possible Futures


One of the causes of aggressive liver cancer discovered: a ‘molecular staple’ that helps repair broken: DNA Researchers describe a new DNA repair mechanism that hinders cancer treatment January 27th, 2023


Stability of perovskite solar cells reaches next milestone January 27th, 2023


Danish quantum physicists make nanoscopic advance of colossal significance January 27th, 2023


UC Irvine researchers decipher atomic-scale imperfections in lithium-ion batteries: Team used super high-resolution microscopy enhanced by deep machine learning January 27th, 2023

Discoveries


One of the causes of aggressive liver cancer discovered: a ‘molecular staple’ that helps repair broken: DNA Researchers describe a new DNA repair mechanism that hinders cancer treatment January 27th, 2023


Stability of perovskite solar cells reaches next milestone January 27th, 2023


Qubits on strong stimulants: Researchers find ways to improve the storage time of quantum information in a spin rich material January 27th, 2023


Quantum sensors see Weyl photocurrents flow: Boston College-led team develops new quantum sensor technique to image and understand the origin of photocurrent flow in Weyl semimetals January 27th, 2023

Announcements


UCF researcher receives Samsung International Global Research Outreach Award: The award from the multinational electronics corporation will fund the development of infrared night vision and thermal sensing camera technology for cell phones and consumer electronics January 27th, 2023


Quantum sensors see Weyl photocurrents flow: Boston College-led team develops new quantum sensor technique to image and understand the origin of photocurrent flow in Weyl semimetals January 27th, 2023


Department of Energy announces $9.1 million for research on quantum information science and nuclear physics: Projects span the development of quantum computing, algorithms, simulators, superconducting qubits, and quantum sensors for advancing nuclear physics January 27th, 2023


Danish quantum physicists make nanoscopic advance of colossal significance January 27th, 2023

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters


Qubits on strong stimulants: Researchers find ways to improve the storage time of quantum information in a spin rich material January 27th, 2023


Quantum sensors see Weyl photocurrents flow: Boston College-led team develops new quantum sensor technique to image and understand the origin of photocurrent flow in Weyl semimetals January 27th, 2023


Danish quantum physicists make nanoscopic advance of colossal significance January 27th, 2023


UC Irvine researchers decipher atomic-scale imperfections in lithium-ion batteries: Team used super high-resolution microscopy enhanced by deep machine learning January 27th, 2023

Environment


This new fabric coating could drastically reduce microplastic pollution from washing clothes: University of Toronto Engineering researchers are working on a fabric finish to prevent microplastic fibres from shedding during laundry cycles January 27th, 2023


Researchers create a new 3D extra-large pore zeolite that opens a new path to the decontamination of water and gas: A team of scientists with the participation of the CSIC develops an extra-large pore silica zeolite from a silicate chain January 20th, 2023


New nanowire sensors are the next step in the Internet of Things January 6th, 2023


New method of reducing carbon dioxide could be a golden solution to pollution December 9th, 2022

Energy


Stability of perovskite solar cells reaches next milestone January 27th, 2023


Quantum sensors see Weyl photocurrents flow: Boston College-led team develops new quantum sensor technique to image and understand the origin of photocurrent flow in Weyl semimetals January 27th, 2023


Polymer p-doping improves perovskite solar cell stability January 20th, 2023


Electricity harvesting from evaporation, raindrops and moisture inspired by nature January 6th, 2023

Construction


Strain-sensing smart skin ready to deploy: Nanotube-embedded coating detects threats from wear and tear in large structures July 15th, 2022


A sunlight-driven “self-healing” anti-corrosion coating May 27th, 2022


Polymer fibers with graphene nanotubes make it possible to heat hard-to-reach, complex-shaped items February 11th, 2022


You’re so vein: Scientists discover faster way to manufacture vascular materials May 14th, 2021

Leave a Reply

Your email address will not be published. Required fields are marked *