Nanotechnology Now – Press Release: The USTC realizes In situ electron paramagnetic resonance spectroscopy using single nanodiamond sensors


Home > Press > The USTC realizes In situ electron paramagnetic resonance spectroscopy using single nanodiamond sensors

experimental results

CREDIT
USTC
experimental results

CREDIT
USTC

Abstract:
Teams led by Prof. DU Jiangfeng, Prof. SHI Fazhan and Prof. KONG Fei from the University of Science and Technology of China (USTC) of the Chinese Academy of Sciences (CAS) used the Nitrogen-Vacancy (NV) center inside a single nanodiamond for quantum sensing to overcome the problem of random particle rotation.

The USTC realizes In situ electron paramagnetic resonance spectroscopy using single nanodiamond sensors


Hefei, China | Posted on November 3rd, 2023

The study was published on Oct. 7th in Nature Communications.

It is an important goal to detect and analyze molecules under physiological in situ conditions in the field of life sciences. Only by observing biomolecules under this condition can we reveal conformation changes when they realize physiological functions.

Thanks to its high sensitivity, good biocompatibility, and the characteristics of magnetic resonance detection of single molecules at room temperature atmosphere, the NV center quantum sensor is rather suitable for physiological in situ detection than traditional magnetic spectrum resonance instruments.

However, the results of tracking the movement of nanodiamond in living cells show that it rotates randomly both inside the cell and on the cell membrane, making the current common magnetic resonance detection methods ineffective.

To solve this problem, the research team designed an amplitude-modulation sequence, which will generate a series of equally spaced energy levels on the NV center.

When the energy level of the NV center matches the energy level of the measured target, resonance will occur and the state of the NV center will change.

By scanning the modulation frequency, the electron paramagnetic resonance (EPR) spectroscopy of the target can be obtained, and the position of the spectral peak is no longer affected by the spatial orientation of the NV center.

In this work, the ions in the solution environment of nanodiamond were measured by EPR spectroscopy under the condition of in situ. The research team simulated the movement of nanodiamonds in the cell to detect the solution of oxygen vanadium ions.

When there is rotation of nanodiamond, it is difficult to conduct accurate quantum manipulation of NV centers, but zero-field EPR spectrum of oxo-vanadium ions can still be measured.

This result proves in principle that it is feasible to use NV center in nanodiamond to realize the detection of intracellular physiological in-situ magnetic resonance.

The oxygen vanadium ions detected in this work itself have biological functions. The ultra-fine constant of oxygen vanadium ions can be analyzed and obtained by the EPR spectrum measured by a single moving nanodiamond.

The research team has previously relaxed the detection conditions of single-molecular magnetic resonance detection from solid conditions to aqueous solution environment, and this work has further promoted it to the in situ environment.

####

For more information, please click here

Contacts:
Jane Fan
University of Science and Technology of China

Copyright © University of Science and Technology of China

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious
Digg
Newsvine
Google
Yahoo
Reddit
Magnoliacom
Furl
Facebook

Paper:

News and information


New designs for solid-state electrolytes may soon revolutionize the battery industry: Scientists achieve monumental improvements in lithium-metal-chloride solid-state electrolytes November 3rd, 2023


Nanoparticle quasicrystal constructed with DNA: The breakthrough opens the way for designing and building more complex structures November 3rd, 2023


TU Delft researchers discover new ultra strong material for microchip sensors: A material that doesn’t just rival the strength of diamonds and graphene, but boasts a yield strength 10 times greater than Kevlar, renowned for its use in bulletproof vests November 3rd, 2023


Optical-fiber based single-photon light source at room temperature for next-generation quantum processing: Ytterbium-doped optical fibers are expected to pave the way for cost-effective quantum technologies November 3rd, 2023


What a “2D” quantum superfluid feels like to the touch November 3rd, 2023

Quantum Physics


Optical-fiber based single-photon light source at room temperature for next-generation quantum processing: Ytterbium-doped optical fibers are expected to pave the way for cost-effective quantum technologies November 3rd, 2023


What a “2D” quantum superfluid feels like to the touch November 3rd, 2023


Twisted science: NIST researchers find a new quantum ruler to explore exotic matter October 6th, 2023


Discovery made by University of Warsaw scientists may enable network interface for quantum computers October 6th, 2023

Imaging


Observation of left and right at nanoscale with optical force October 6th, 2023


Previously unknown pathway to batteries with high energy, low cost and long life: Newly discovered reaction mechanism overcomes rapid performance decline in lithium-sulfur batteries September 8th, 2023

Possible Futures


Light guide plate based on perovskite nanocomposites November 3rd, 2023


Charged “molecular beasts” the basis for new compounds: Researchers at Leipzig University use “aggressive” fragments of molecular ions for chemical synthesis November 3rd, 2023


Study on Magnetic Force Microscopy wins 2023 Advances in Magnetism Award: Analysis of finite size effects reveals significant consequences for density measurements November 3rd, 2023


Ferroelectrically modulate the Fermi level of graphene oxide to enhance SERS response November 3rd, 2023

Discoveries


New designs for solid-state electrolytes may soon revolutionize the battery industry: Scientists achieve monumental improvements in lithium-metal-chloride solid-state electrolytes November 3rd, 2023


Nanoparticle quasicrystal constructed with DNA: The breakthrough opens the way for designing and building more complex structures November 3rd, 2023


TU Delft researchers discover new ultra strong material for microchip sensors: A material that doesn’t just rival the strength of diamonds and graphene, but boasts a yield strength 10 times greater than Kevlar, renowned for its use in bulletproof vests November 3rd, 2023


Optical-fiber based single-photon light source at room temperature for next-generation quantum processing: Ytterbium-doped optical fibers are expected to pave the way for cost-effective quantum technologies November 3rd, 2023

Announcements


Light guide plate based on perovskite nanocomposites November 3rd, 2023


Charged “molecular beasts” the basis for new compounds: Researchers at Leipzig University use “aggressive” fragments of molecular ions for chemical synthesis November 3rd, 2023


Study on Magnetic Force Microscopy wins 2023 Advances in Magnetism Award: Analysis of finite size effects reveals significant consequences for density measurements November 3rd, 2023


Ferroelectrically modulate the Fermi level of graphene oxide to enhance SERS response November 3rd, 2023

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters


New designs for solid-state electrolytes may soon revolutionize the battery industry: Scientists achieve monumental improvements in lithium-metal-chloride solid-state electrolytes November 3rd, 2023


Nanoparticle quasicrystal constructed with DNA: The breakthrough opens the way for designing and building more complex structures November 3rd, 2023


TU Delft researchers discover new ultra strong material for microchip sensors: A material that doesn’t just rival the strength of diamonds and graphene, but boasts a yield strength 10 times greater than Kevlar, renowned for its use in bulletproof vests November 3rd, 2023


Optical-fiber based single-photon light source at room temperature for next-generation quantum processing: Ytterbium-doped optical fibers are expected to pave the way for cost-effective quantum technologies November 3rd, 2023

Tools


Ferroelectrically modulate the Fermi level of graphene oxide to enhance SERS response November 3rd, 2023


Observation of left and right at nanoscale with optical force October 6th, 2023


New single-photon Raman lidar can monitor for underwater oil leaks: System could be used aboard underwater vehicles for many applications June 30th, 2023


Research breakthrough could be significant for quantum computing future: Irish-based scientists confirm crucial characteristic of new superconductor material June 30th, 2023

Leave a Reply

Your email address will not be published. Required fields are marked *