Nanotechnology Now – Press Release: Turning heat into electricity: A new thermoelectric material developed at FEFU: Young scientists from FEFU manufactured new thermoelectric material based on strontium titanate and titanium oxide


Home > Press > Turning heat into electricity: A new thermoelectric material developed at FEFU: Young scientists from FEFU manufactured new thermoelectric material based on strontium titanate and titanium oxide

Graphical abstract

CREDIT
FEFU press-office
Graphical abstract

CREDIT
FEFU press-office

Abstract:
Young scientists from Far Eastern Federal University (FEFU) developed the concept and manufactured samples of a new thermoelectric material — biphase nanoceramics based on strontium titanate SrTiO3 and titanium oxide TiO2. It can help to transform exhaust heat (heat losses amounting to about 60% of heat exchange) into electrical energy and to protect devices operating at temperatures above 1,000°? from overheating. The article was published in the special Advanced Thermoelectric Materials issue of the Materials journal.

Turning heat into electricity: A new thermoelectric material developed at FEFU: Young scientists from FEFU manufactured new thermoelectric material based on strontium titanate and titanium oxide


Vladivostok, Russia | Posted on September 27th, 2019

The team from FEFU worked together with scientists from the Institute of Chemistry of the Far Eastern Department of the Russian Academy of Sciences and has already obtained the first experimental samples of biphase nanoceramics. The material has high mechanical performance, thermal, and chemical resistance. The team is currently testing its thermoelectric properties.

‘Many technological properties cause the emission of exhaust heat at high temperatures. For example, the temperature on the outer side of an exhaust pipe can reach about 700°C. In these conditions popular thermoelectric materials based on bismuth telluride Bi2Te3 and lead telluride PbTe face increased risks of thermal breakdown which may lead to environmental pollution with heavy metals. Our task was to develop a high-quality thermoelectric material that would be chemically stable and resistant to high temperatures,’ said Alexey Zavjalov, a researcher at the School of Natural Sciences, FEFU, who developed the composition of the new material.

The team from FEFU suggested a biphase ceramic system based on metal oxides: strontium titanate SrTiO3 and titanium oxide TiO2. The oxides have high thermal and chemical resistance at temperatures above 1,000° but do not show excellent thermoelectric properties on their own. The biphase structure and nanosized grains considerably increase the material’s thermoelectric efficacy.

Increased density and mechanical performance of the material along with the nanosize of its grains and high concentration of intergranular boundaries are important properties for extreme temperature conditions. In the new material they were obtained by means of high-speed consolidation of SrCO3 and anatase TiO2 nanopowders under pressure. This process is called reactive spark plasma sintering.

‘The new material may be used not only for secondary exhaust heat processing, but also as a part of high-tech applications as an active heat buffer. TiO2-SrTiO3 based nanoceramics can increase the service life and characteristics of devices that operate at temperatures above 1,000°,’ said Denis Kosyanov, a senior researcher at the Center for National Technological Initiatives, FEFU, and the head of the group.

The team of young researchers from FEFU won a grant of the Russian Foundation for Basic Research for the development of new materials for laser technologies based on ‘optical ceramics – thermoelectrics’ heterostructures in 2018. The concept of the new thermoelectric ceramics is a result of grant work.

###

FEFU runs a Materials priority project, and a Center for National Technological Initiatives in Neurotechnologies, VR/AR Technologies (grant No. 1/1251/2018 dated October 16, 2018). The researchers working in these areas develop scientific and technical bases for multifunctional ceramic materials to be used in microelectronics, lighting technologies, and radiochemistry.

The research was carried out within the framework of grant No. 18-29-11044 provided by the Russian Foundation for Basic Research.

####

For more information, please click here

Contacts:
Alexander Zverev

Copyright © Far Eastern Federal University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious
Digg
Newsvine
Google
Yahoo
Reddit
Magnoliacom
Furl
Facebook

RELATED JOURNAL ARTICLE:

News and information

Researchers synthesize ‘impossible’ superconductor October 3rd, 2019

Oxford Instruments Supplies HLJ Technology Co. Ltd., with Plasma Etch and Deposition Solutions for the fabrication of VCSELS on 6 inch wafers October 3rd, 2019

Researchers repurpose failed cancer drug into printable semiconductor October 3rd, 2019

New materials to help stop lithium-ion battery fires, explosions and improve battery performance October 2nd, 2019

Govt.-Legislation/Regulation/Funding/Policy

Borophene on silver grows freely into an atomic ‘skin’: Rice scientists lead effort to improve manufacture of valuable 2D material October 1st, 2019

Machine learning at the quantum lab September 27th, 2019

CCNY physicists score double hit in LED research September 27th, 2019

Novel nanogels hold promise for improved drug delivery to cancer patients: ‘Precision Medicine’ approach underpins UT Austin engineers’ development of multifunctional nanogel September 27th, 2019

Possible Futures

Researchers synthesize ‘impossible’ superconductor October 3rd, 2019

Researchers repurpose failed cancer drug into printable semiconductor October 3rd, 2019

New materials to help stop lithium-ion battery fires, explosions and improve battery performance October 2nd, 2019

Arrowhead Pharmaceuticals to Participate in Upcoming October 2019 Conferences October 1st, 2019

Discoveries

Researchers synthesize ‘impossible’ superconductor October 3rd, 2019

Researchers repurpose failed cancer drug into printable semiconductor October 3rd, 2019

New materials to help stop lithium-ion battery fires, explosions and improve battery performance October 2nd, 2019

Borophene on silver grows freely into an atomic ‘skin’: Rice scientists lead effort to improve manufacture of valuable 2D material October 1st, 2019

Materials/Metamaterials

Physicists found weak spots in ceramic/graphene composites: Physicists found out the structures in nanomaterials made of ceramic and graphene plates, in which cracks appear most frequently September 27th, 2019

The future of materials with graphene nanotubes starts in Japan September 19th, 2019

A Quantum Leap: $25M grant makes UC Santa Barbara home to the nation’s first NSF-funded Quantum Foundry, a center for development of materials for quantum information-based technologies September 16th, 2019

MIT engineers develop ‘blackest black’ material to date: Made from carbon nanotubes, the new coating is 10 times darker than other very black materials September 13th, 2019

Announcements

Researchers synthesize ‘impossible’ superconductor October 3rd, 2019

Oxford Instruments Supplies HLJ Technology Co. Ltd., with Plasma Etch and Deposition Solutions for the fabrication of VCSELS on 6 inch wafers October 3rd, 2019

Researchers repurpose failed cancer drug into printable semiconductor October 3rd, 2019

New materials to help stop lithium-ion battery fires, explosions and improve battery performance October 2nd, 2019

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

Researchers synthesize ‘impossible’ superconductor October 3rd, 2019

Researchers repurpose failed cancer drug into printable semiconductor October 3rd, 2019

Borophene on silver grows freely into an atomic ‘skin’: Rice scientists lead effort to improve manufacture of valuable 2D material October 1st, 2019

New design of bioactive peptide nanofibers keeping both temperature reversibility and stiffness control September 30th, 2019

Battery Technology/Capacitors/Generators/Piezoelectrics/Thermoelectrics/Energy storage

New materials to help stop lithium-ion battery fires, explosions and improve battery performance October 2nd, 2019

Borophene on silver grows freely into an atomic ‘skin’: Rice scientists lead effort to improve manufacture of valuable 2D material October 1st, 2019

‘Nanochains’ could increase battery capacity, cut charging time September 20th, 2019

The future of materials with graphene nanotubes starts in Japan September 19th, 2019

Leave a Reply

Your email address will not be published. Required fields are marked *