Nanotechnology Now – Press Release: Turning the heat on: A flexible device for localized heat treatment of living tissues


Home > Press > Turning the heat on: A flexible device for localized heat treatment of living tissues

Figure 1 Induction Heating-based Flexible Device to Revolutionize Targeted Thermotherapy.

CREDIT
Tokyo Tech
Figure 1 Induction Heating-based Flexible Device to Revolutionize Targeted Thermotherapy.

CREDIT
Tokyo Tech

Abstract:
Thermotherapy or heat treatment can help in treating lesions and other tissue injuries. For example, chemotherapy or radiotherapy, when combined with thermotherapy, kills tumorous cells more effectively. Thermotherapy is considered a promising approach for treating internal lesions, but the advancement in the field depends on the availability of patient-friendly heat-inducing devices capable of rapidly increasing the temperature of target tissues.

Turning the heat on: A flexible device for localized heat treatment of living tissues


Tokyo, Japan | Posted on June 11th, 2021

Current clinical practices around thermotherapy majorly employ heat-generating devices that are probed inside the human body or are in contact with the skin. Receiving energy from external power sources and often operating through converging magnetic fields, these devices are usually large in size and static, limiting the movement of patients and also prolonging operational time.

An alternative option is small and flexible devices that can be implanted in the patient’s body; however, such implantable devices must be flexible, body-compatible, heat resistant, and be powered wirelessly for heat generation–some of the criteria that are essential for their clinical use.

Recently, researchers at Tokyo Tech have innovated a heat-generating device that can revolutionize the field of thermotherapy by meeting all of the above criteria. Their innovation was reported in an article published in Advanced Functional Materials. Discussing their motivation, Associate Professor Toshinori Fujie, who led the study, explains ”One of the major obstacles in developing an implantable heating device is the requirement of incorporating electronic elements such capacitors in the circuit of the device itself. Such insertion takes away the flexibility required for internal implantation. To overcome this, we took the help of induction-heating, the same technology that is used in cooking heaters”. The working of such a device is based on the premise that the magnetic field generated by a coil with a high-frequency current induces current flow in a closely placed metal. Owing to its internal resistance, the metal then heats up automatically.

Developing such an induction heating device required ingenious design. First, the researchers printed the electronic wiring on a polyimide film with an ‘ink’ made of gold-nanoparticles. Next, a layer of poly (D, L-lactic acid) or PDLLA was coated above the printed film. In addition to heat-durability, the PDLLA layer is biodegradable and biocompatible, making it an excellent candidate for the base material of the device. Then, using tweezers, the researchers peeled off the PDLLA layer, causing it to come off the polyimide film. The result was a flexible device, conformably attaching to human skin, with electronic wirings printed on it.

Once the device showed satisfactory electrical performance, mechanical strength, and heat generation capacity, the researchers assessed its clinical functionality by planting it on living tissue–the hepatic lobe of a beagle dog. The results were extremely promising. When a transmitter coil was placed directly on the device for one minute, the temperature of the liver tissue increased up to 7°C without any indication of tissue burning.

Assoc. Prof. Fujie highlights the feat of their research ”The flexibility, biocompatibility, and wireless-powered heating capacity of our device opens up the possibility of using thermotherapy in wide clinical scenarios including minimally invasive endoscopic surgery. Moreover, by adjusting the number and size of these devices, lesions of different sizes can be treated”.

What an incredible localized solution to revolutionize the medical field globally!

####

For more information, please click here

Contacts:
Kazuhide Hasegawa

81-357-342-975

Copyright © Tokyo Institute of Technology

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious
Digg
Newsvine
Google
Yahoo
Reddit
Magnoliacom
Furl
Facebook

RELATED JOURNAL ARTICL

Cancer

Researchers turned transparent calcite into artificial gold June 11th, 2021

News and information

Molecular coating enhances organic solar cells June 11th, 2021

Researchers tame silicon to interact with light for next-generation microelectronics June 11th, 2021

Researchers take quantum encryption out of the lab: Field trial shows simple QKD system works with existing telecommunication network in Italy June 11th, 2021

NASA Chief Scientist Dr. Jim Green to Appear at the Online NSS International Space Development Conference 2021: This Year’s Virtual Conference Streams Free to ALL June 11th, 2021

Possible Futures

Researchers tame silicon to interact with light for next-generation microelectronics June 11th, 2021

Researchers take quantum encryption out of the lab: Field trial shows simple QKD system works with existing telecommunication network in Italy June 11th, 2021

NASA Chief Scientist Dr. Jim Green to Appear at the Online NSS International Space Development Conference 2021: This Year’s Virtual Conference Streams Free to ALL June 11th, 2021

Rice lab peers inside 2D crystal synthesis: Simulations could help molecular engineers enhance creation of semiconducting nanomaterials June 11th, 2021

Nanomedicine

Arrowhead Pharmaceuticals to Participate in Upcoming Conferences June 2nd, 2021

Arrowhead Pharmaceuticals to Participate in Upcoming Conferences June 2nd, 2021

Implantable ‘living pharmacy’ could control body’s sleep/wake cycles: Project receives DARPA contract worth up to $33 million over 4 1/2 years May 13th, 2021

Tiny, Wireless, Injectable Chips Use Ultrasound to Monitor Body Processes May 12th, 2021

Discoveries

Molecular coating enhances organic solar cells June 11th, 2021

Researchers tame silicon to interact with light for next-generation microelectronics June 11th, 2021

Researchers take quantum encryption out of the lab: Field trial shows simple QKD system works with existing telecommunication network in Italy June 11th, 2021

Rice lab peers inside 2D crystal synthesis: Simulations could help molecular engineers enhance creation of semiconducting nanomaterials June 11th, 2021

Announcements

Researchers tame silicon to interact with light for next-generation microelectronics June 11th, 2021

Researchers take quantum encryption out of the lab: Field trial shows simple QKD system works with existing telecommunication network in Italy June 11th, 2021

NASA Chief Scientist Dr. Jim Green to Appear at the Online NSS International Space Development Conference 2021: This Year’s Virtual Conference Streams Free to ALL June 11th, 2021

Rice lab peers inside 2D crystal synthesis: Simulations could help molecular engineers enhance creation of semiconducting nanomaterials June 11th, 2021

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Molecular coating enhances organic solar cells June 11th, 2021

Researchers tame silicon to interact with light for next-generation microelectronics June 11th, 2021

Researchers take quantum encryption out of the lab: Field trial shows simple QKD system works with existing telecommunication network in Italy June 11th, 2021

Rice lab peers inside 2D crystal synthesis: Simulations could help molecular engineers enhance creation of semiconducting nanomaterials June 11th, 2021

Nanobiotechnology

Arrowhead Pharmaceuticals to Participate in Upcoming Conferences June 2nd, 2021

Arrowhead Pharmaceuticals to Participate in Upcoming Conferences June 2nd, 2021

Implantable ‘living pharmacy’ could control body’s sleep/wake cycles: Project receives DARPA contract worth up to $33 million over 4 1/2 years May 13th, 2021

Tiny, Wireless, Injectable Chips Use Ultrasound to Monitor Body Processes May 12th, 2021

Leave a Reply

Your email address will not be published. Required fields are marked *