Home > Press > Ultra-fast gas flows through tiniest holes in 2D membranes: Researchers from the National Graphene Institute at the University of Manchester and the University of Pennsylvania identify ultra-fast gas flows through atomic-scale apertures in 2D membrane and validate a century-old e
Researchers identify ultra-fast gas flows through atomic-scale apertures in 2D membrane and validate a century-old equation of fluid dynamics.
CREDIT N Hassani & M N-Amal, Shahid Rajee University |
Abstract:
Researchers from the National Graphene Institute at the University of Manchester and the University of Pennsylvania have identified ultra-fast gas flows through the tiniest holes in one-atom-thin membranes, in a study published in Science Advances.
Ultra-fast gas flows through tiniest holes in 2D membranes: Researchers from the National Graphene Institute at the University of Manchester and the University of Pennsylvania identify ultra-fast gas flows through atomic-scale apertures in 2D membrane and validate a century-old e
Philadelphia, PA | Posted on December 18th, 2020
The work – alongside another study from Penn on the creation of such nano-porous membranes – holds promise for numerous application areas, from water and gas purification to monitoring of air quality and energy harvesting.
In the early 20th century, renowned Danish physicist Martin Knudsen formulated theories to describe gas flows. Emerging new systems of narrower pores challenged the Knudsen descriptions of gas flows, but they remained valid and it was unknown at which point of diminishing scale they might fail.
The Manchester team – led by Professor Radha Boya, in collaboration with the University of Pennsylvania team, led by Professor Marija Drndi? – has shown for the first time that Knudsen’s description seems to hold true at the ultimate atomic limit.
The science of two dimensional (2D)-materials is progressing rapidly and it is now routine for researchers to make one-atom-thin membranes. Professor Drndi?’s group in Pennsylvania developed a method to drill holes, one atom wide, on a monolayer of tungsten disulphide. One important question remained, though: to check if the atomic-scale holes were through and conducting, without actually seeing them manually, one by one. The only way previously to confirm if the holes were present and of the intended size, was to inspect them in a high resolution electron microscope.
Professor Boya’s team developed a technique to measure gas flows through atomic holes, and in turn use the flow as a tool to quantify the hole density. She said: “Although it is beyond doubt that seeing is believing, the science has been pretty much limited by being able to only seeing the atomic pores in a fancy microscope. Here we have devices through which we can not only measure gas flows, but also use the flows as a guide to estimate how many atomic holes were there in the membrane to start with.”
J Thiruraman, the co-first author of the study, said: “Being able to reach that atomic scale experimentally, and to have the imaging of that structure with precision so you can be more confident it’s a pore of that size and shape, was a challenge.”
Professor Drndi? added: “There’s a lot of device physics between finding something in a lab and creating a usable membrane. That came with the advancement of the technology as well as our own methodology, and what is novel here is to integrate this into a device that you can actually take out, transport across the ocean if you wish [to Manchester], and measure.”
Dr Ashok Keerthi, another lead author from the Manchester team, said: “Manual inspection of the formation of atomic holes over large areas on a membrane is painstaking and probably impractical. Here we use a simple principle, the amount of the gas the membrane lets through is a measure of how holey it is.”
The gas flows achieved are several orders of magnitude larger than previously observed flows in angstrom-scale pores in literature. A one-to-one correlation of atomic aperture densities by transmission electron microscopy imaging (measured locally) and from gas flows (measured on a large scale) was combined by this study and published by the team. S Dar, a co-author from Manchester added: “Surprisingly there is no/minimal energy barrier to the flow through such tiny holes.”
Professor Boya added: “We now have a robust method for confirming the formation of atomic apertures over large areas using gas flows, which is an essential step for pursuing their prospective applications in various domains including molecular separation, sensing and monitoring of gases at ultra-low concentrations.”
###
This work was conducted through an international collaboration and, includes experimental teams from Manchester and Philadelphia, and as well as theoretical groups from Shahid Rajee University, Iran and the University of Antwerp, Belgium.
####
For more information, please click here
Contacts:
Erica Brockmeier
@Penn
Copyright © University of Pennsylvania
If you have a comment, please Contact us.
Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
News and information
180 Degree Capital Corp. Announces the Initiation of Repurchases under Its $2.5 Million Stock Buyback Program, a 1-for-3 Reverse Stock Split, and Q4 2020 Updates December 22nd, 2020
New class of cobalt-free cathodes could enhance energy density of next-gen lithium-ion batteries December 21st, 2020
New topological properties found in “old” material of Cobalt disulfide: For one thing, it’s not a true half-metal December 18th, 2020
Nanotechnology — nanoparticles as weapons against cancer December 18th, 2020
2 Dimensional Materials
Faraday fabrics? MXene-coated fabric could contain electronic interference in wearable devices December 11th, 2020
Graphene/ Graphite
RUDN University physicists described a new type of amorphous solid bodies December 4th, 2020
New platform generates hybrid light-matter excitations in highly charged graphene December 2nd, 2020
New insights into memristive devices by combining incipient ferroelectrics and graphene November 27th, 2020
Staying ahead of the curve with 3D curved graphene November 20th, 2020
Possible Futures
New topological properties found in “old” material of Cobalt disulfide: For one thing, it’s not a true half-metal December 18th, 2020
Nanotechnology — nanoparticles as weapons against cancer December 18th, 2020
Stevens creates entangled photons 100 times more efficiently than previously possible: Ultra-bright photon source brings scalable quantum photonics within reach December 17th, 2020
Discoveries
New class of cobalt-free cathodes could enhance energy density of next-gen lithium-ion batteries December 21st, 2020
New topological properties found in “old” material of Cobalt disulfide: For one thing, it’s not a true half-metal December 18th, 2020
Nanotechnology — nanoparticles as weapons against cancer December 18th, 2020
Stevens creates entangled photons 100 times more efficiently than previously possible: Ultra-bright photon source brings scalable quantum photonics within reach December 17th, 2020
Announcements
180 Degree Capital Corp. Announces the Initiation of Repurchases under Its $2.5 Million Stock Buyback Program, a 1-for-3 Reverse Stock Split, and Q4 2020 Updates December 22nd, 2020
New class of cobalt-free cathodes could enhance energy density of next-gen lithium-ion batteries December 21st, 2020
New topological properties found in “old” material of Cobalt disulfide: For one thing, it’s not a true half-metal December 18th, 2020
Nanotechnology — nanoparticles as weapons against cancer December 18th, 2020
Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters
New topological properties found in “old” material of Cobalt disulfide: For one thing, it’s not a true half-metal December 18th, 2020
Nanotechnology — nanoparticles as weapons against cancer December 18th, 2020
Stevens creates entangled photons 100 times more efficiently than previously possible: Ultra-bright photon source brings scalable quantum photonics within reach December 17th, 2020
Energy
Nanomaterials researchers in Finland, the United States and China have created a color atlas for 466 unique varieties of single-walled carbon nanotubes. December 14th, 2020
Chemists get peek at novel fluorescence: Rice University scientists discover delayed phenomenon in carbon nanotubes December 3rd, 2020
CsPbBrI2 perovskites with low energy loss for high-performance indoor and outdoor photovoltaics December 1st, 2020
Water
Industrial-strength brine, meet your kryptonite: Boron nitride coating is key ingredient in hypersaline desalination technology November 6th, 2020
Cicada-inspired waterproof surfaces closer to reality, researchers report October 23rd, 2020
NSF renews Rice-based NEWT Center for water treatment: Partnership primed to introduce game-changing technologies to address global needs October 15th, 2020
Layer of nanoparticles could improve LED performance and lifetime August 7th, 2020