Home > Press > Understanding outsize role of nanopores: New research reveals differences in pH, and more, about these previously mysterious environments
In the lab, the research teams found that anions were preferred to transport in nanopores, inducing lower pH inside the nanopores than in the bulk solution. The higher the salinity of the solution, the greater the difference — as much as 100 times more acidic.
CREDIT Jun Lab |
Abstract:
There is an entire aqueous universe hidden within the tiny pores of many natural and engineered materials. Research from the McKelvey School of Engineering at Washington University in St. Louis has shown that when such materials are submerged in liquid, the chemistry inside the tiny pores known as nanopores can differ critically from that in the bulk solution.
Understanding outsize role of nanopores: New research reveals differences in pH, and more, about these previously mysterious environments
St. Louis, MO | Posted on August 26th, 2022
In fact, in higher-salinity solutions, the pH inside of nanopores can be as much as 100 times more acidic than in the bulk solution.
The research findings were published Aug. 22 in the journal CHEM.
A better understanding of nanopores can have important consequences for a variety of engineering processes. Think, for example, of clean-water generation using membrane processes; decarbonization technologies for energy systems, including carbon capture and sequestration; hydrogen production and storage; and batteries.
Young-Shin Jun, a professor of energy, environmental and chemical engineering, and Srikanth Singamaneni, the Lilyan & E. Lisle Hughes Professor in the Department of Mechanical Engineering & Materials Science, wanted to understand how pH the measure of how acidic or basic a liquid is in nanopores differed from that of the bulk liquid solution they are submerged in.
pH is a master variable for water chemistry, Jun said. When it is measured in practice, people are really measuring the pH of the bulk solution, not the pH inside the materials nanopores.
And if they are different, that is a big deal because the information about the little tiny space will change the entire prediction in the system.
####
For more information, please click here
Contacts:
Brandie Jefferson
Washington University in St. Louis
Office: 314-935-5272
Copyright © Washington University in St. Louis
If you have a comment, please Contact us.
Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Read more on the engineering website:
News and information
Dielectric metalens speed up the development of miniaturized imaging systems August 26th, 2022
Master equation to boost quantum technologies: FQXi-funded analysis will help physicists exert exquisitely precise real-time feedback control over quantum systems August 26th, 2022
An alternative to MINFLUX that enables nanometre resolution in a confocal microscope August 26th, 2022
Chemistry
First electric nanomotor made from DNA material: Synthetic rotary motors at the nanoscale perform mechanical work July 22nd, 2022
Crystal phase engineering offers glimpse of future potential, researchers say July 15th, 2022
Govt.-Legislation/Regulation/Funding/Policy
New chip ramps up AI computing efficiency August 19th, 2022
Rice team eyes cells for sophisticated data storage: National Science Foundation backs effort to turn living cells into equivalent of computer RAM August 19th, 2022
Possible Futures
Dielectric metalens speed up the development of miniaturized imaging systems August 26th, 2022
Master equation to boost quantum technologies: FQXi-funded analysis will help physicists exert exquisitely precise real-time feedback control over quantum systems August 26th, 2022
An alternative to MINFLUX that enables nanometre resolution in a confocal microscope August 26th, 2022
Discoveries
High-speed random number generation using self-chaotic microcavity lasers August 26th, 2022
Dielectric metalens speed up the development of miniaturized imaging systems August 26th, 2022
Master equation to boost quantum technologies: FQXi-funded analysis will help physicists exert exquisitely precise real-time feedback control over quantum systems August 26th, 2022
An alternative to MINFLUX that enables nanometre resolution in a confocal microscope August 26th, 2022
Announcements
Dielectric metalens speed up the development of miniaturized imaging systems August 26th, 2022
Master equation to boost quantum technologies: FQXi-funded analysis will help physicists exert exquisitely precise real-time feedback control over quantum systems August 26th, 2022
An alternative to MINFLUX that enables nanometre resolution in a confocal microscope August 26th, 2022
Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters
High-speed random number generation using self-chaotic microcavity lasers August 26th, 2022
Dielectric metalens speed up the development of miniaturized imaging systems August 26th, 2022
Master equation to boost quantum technologies: FQXi-funded analysis will help physicists exert exquisitely precise real-time feedback control over quantum systems August 26th, 2022
An alternative to MINFLUX that enables nanometre resolution in a confocal microscope August 26th, 2022
Military
New chip ramps up AI computing efficiency August 19th, 2022
Strain-sensing smart skin ready to deploy: Nanotube-embedded coating detects threats from wear and tear in large structures July 15th, 2022
Boron nitride nanotube fibers get real: Rice lab creates first heat-tolerant, stable fibers from wet-spinning process June 24th, 2022
Environment
Generating power where seawater and river water meet July 22nd, 2022
University of Strathclyde and National University of Singapore to co-ordinate satellite quantum communications May 13th, 2022
Lightening up the nanoscale long-wavelength optoelectronics May 13th, 2022
Energy
Generating power where seawater and river water meet July 22nd, 2022
Battery Technology/Capacitors/Generators/Piezoelectrics/Thermoelectrics/Energy storage
Lithiophilic seeds and rigid arrays synergistic induced dendrite-free and stable Li anode towards long-life lithium-oxygen batteries July 22nd, 2022
Crystal phase engineering offers glimpse of future potential, researchers say July 15th, 2022
Sieving carbons: Ideal anodes for high-energy sodium-ion batteries July 1st, 2022
Two opposing approaches could give lithium-sulfur batteries a leg up over lithium-ion July 1st, 2022
Grants/Sponsored Research/Awards/Scholarships/Gifts/Contests/Honors/Records
New chip ramps up AI computing efficiency August 19th, 2022
UNC Charlotte-led team invents new anticoagulant platform, offering hope for advances for heart surgery, dialysis, other procedures July 15th, 2022
Luisier wins SNSF Advanced Grant to develop simulation tools for nanoscale devices July 8th, 2022