Nanotechnology Now – Press Release: USTC achieved dynamic imaging of interfacial electrochemistry


Home > Press > USTC achieved dynamic imaging of interfacial electrochemistry

Abstract:
The research team led by Prof. LIU Xianwei from the Department of Environmental Science and Engineering of University of Science and Technology of China (USTC) of the Chinese Academy of Science (CAS) has made progress in the dynamic imaging of interfacial electrochemistry. The results were published in Nature Communications under the title of “Dynamic Imaging of Interfacial Electrochemistry on Single Ag Nanowires by Azimuth-modulated Plasmonic Scattering Interferometry”.

USTC achieved dynamic imaging of interfacial electrochemistry


Hefei, China | Posted on August 11th, 2023

The catalytic conversion of pollutants is a pivotal technique in water pollution control. Investigating the dynamic changes of active sites in environmental catalytic materials during the pollutant conversion process is crucial for understanding the structure-activity relationship of these materials, deciphering the catalytic mechanism, and designing and developing new environmental catalysts. While there is significant interest among researchers in analyzing the active sites of nanomaterials, challenges persist in studying the dynamic progression of reactions at the interface of individual nanomaterials in mild aqueous environments.

In response to the aforementioned challenges, the research team developed a high-resolution plasmonic scattering interferometric imaging technique. By modulating the incident light, they effectively eliminated interference from reflected light, achieving surface plasmonic scattering interferometric imaging with high spatial resolution and robust anti-interference capabilities.

Taking the surface electrochemical reactions over silver as an example, the research team tracked in situ the dynamic electrochemical transformation process of a single silver nanowire in solution, spatially inscribed the distribution of the nanowire reaction, and provided key evidence to establish the relationship between the nanowire surface defects, reconfiguration, and reaction activity.

This label-free imaging analysis method can be integrated with techniques like electron microscopy to characterize the structure and chemical composition of nanomaterials. It offers an effective analytical method and technological platform for high-resolution in situ imaging of pollutant catalytic conversion dynamics and for deciphering their structure-activity relationships.

####

For more information, please click here

Contacts:
Jane Fan
University of Science and Technology of China

Copyright © University of Science and Technology of China

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious
Digg
Newsvine
Google
Yahoo
Reddit
Magnoliacom
Furl
Facebook

Paper:

News and information


Femtosecond laser technique births “dancing microrobots”: USTC’s breakthrough in multi-material microfabrication August 11th, 2023


Ribbons of graphene push the material’s potential: A new technique developed at Columbia offers a systematic evaluation of twist angle and strain in layered 2D materials August 11th, 2023


Simple ballpoint pen can write custom LEDs August 11th, 2023


Chloride ions from seawater eyed as possible lithium replacement in batteries of the future August 11th, 2023

Chemistry


Detection of bacteria and viruses with fluorescent nanotubes July 21st, 2023


New catalyst could dramatically cut methane pollution from millions of engines: Researchers demonstrate a way to remove the potent greenhouse gas from the exhaust of engines that burn natural gas. July 21st, 2023


A non-covalent bonding experience: Scientists discover new structures for unique hybrid materials by altering their chemical bonds July 21st, 2023

Imaging


Discovery may lead to terahertz technology for quantum sensing: Metal oxide’s properties could enable wide range of terahertz frequency photonics July 21st, 2023


New single-photon Raman lidar can monitor for underwater oil leaks: System could be used aboard underwater vehicles for many applications June 30th, 2023

Possible Futures


Ribbons of graphene push the material’s potential: A new technique developed at Columbia offers a systematic evaluation of twist angle and strain in layered 2D materials August 11th, 2023


Simple ballpoint pen can write custom LEDs August 11th, 2023


Chloride ions from seawater eyed as possible lithium replacement in batteries of the future August 11th, 2023


Tattoo technique transfers gold nanopatterns onto live cells August 11th, 2023

Discoveries


Ribbons of graphene push the material’s potential: A new technique developed at Columbia offers a systematic evaluation of twist angle and strain in layered 2D materials August 11th, 2023


Simple ballpoint pen can write custom LEDs August 11th, 2023


Chloride ions from seawater eyed as possible lithium replacement in batteries of the future August 11th, 2023


Tattoo technique transfers gold nanopatterns onto live cells August 11th, 2023

Announcements


Ribbons of graphene push the material’s potential: A new technique developed at Columbia offers a systematic evaluation of twist angle and strain in layered 2D materials August 11th, 2023


Simple ballpoint pen can write custom LEDs August 11th, 2023


Chloride ions from seawater eyed as possible lithium replacement in batteries of the future August 11th, 2023


Tattoo technique transfers gold nanopatterns onto live cells August 11th, 2023

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters


Ribbons of graphene push the material’s potential: A new technique developed at Columbia offers a systematic evaluation of twist angle and strain in layered 2D materials August 11th, 2023


Simple ballpoint pen can write custom LEDs August 11th, 2023


Chloride ions from seawater eyed as possible lithium replacement in batteries of the future August 11th, 2023


Tattoo technique transfers gold nanopatterns onto live cells August 11th, 2023

Leave a Reply

Your email address will not be published. Required fields are marked *